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Table 1
Alkylation versus Michael addition of imine 2

Ph2C=N CO2t-Bu
E+

Ph2C=N CO2t-Bu

E2
9 M aq. KOH 
PhMe, 25 oC

PTC 1 (10 mol%)

3

In recent years, a number of chiral quaternary ammonium
phase transfer catalysts (PTCs) have been found to promote highly
enantioselective alkylation of glycine imine 2.1,2 This has led to the
development of effective methods for the synthesis of a wide range
of a-amino acid derivatives.3 The corresponding reactions of imine
2 with Michael acceptors have proved to be more challenging.4–6

These often result in lower enantioselectivities and lower yields
than the corresponding alkylations.
Electrophile Yielda (%) eeb (%)

PhCH2Br 93 94 (S)
n-BuI 88 93 (S)
MVK 87 12 (S)
t-Butyl acrylate <10 —

a Determined by 1H NMR.
b Determined by HPLC.
OBn
H N+
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Et
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For example, we have found that the cinchona alkaloid-derived PTC
+ -
KOH(s) R'4NBr

+ -
1 will promote highly enantioselective asymmetric alkylations of
imine 2 with a wide range of alkyl halides.7 However, under the
same conditions, Michael acceptors such as methyl vinyl ketone
(MVK) and tert-butyl acrylate give disappointing results (Table 1).

Clearly the differing transition states for these processes could
account for these observations, but an additional factor may be
that the Michael additions can also proceed via base-catalyzed
(non-selective) background pathways.

We considered that it might be possible to control the latter by
employing a quaternary ammonium salt catalyst with a basic
counterion (e.g., R04 N+ �OR).8 In this instance, it should be unnec-
essary to add additional base, and hence background reaction path-
ways should be minimized. This approach has so far been
unsuccessful, mainly due to difficulties in isolating and purifying
ll rights reserved.
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quaternary ammonium salts with appropriate basic counterions.
As a result, we decided to investigate the possibility of generating
R04 N+ �OR species 6 in situ. In principle this should be possible sim-
ply by mixing an alkoxide (e.g., KOR, 5) with a quaternary ammo-
nium salt such as 1. As long as the alkoxide is sufficiently lipophilic
the ion exchange equilibrium should favour the desired ion-pair
combination. To further simplify the experimental protocol we
envisaged that the alkoxide species might also be generated
in situ by reaction of the corresponding alcohol (ROH, 4) with
KOH (Scheme 1). The advantage of this approach is that the quater-
nary ammonium alkoxide need never be isolated, but it suffers
from the potential disadvantage that both KOH and KOR could pro-
mote non-selective Michael addition.
R'4N OR

4 5 6
ROH K OR

Scheme 1. In situ generation of R04 N+ �OR species.



Table 2
Effect of phenol additives on the enantioselective Michael addition of imine 2 to
methyl acrylate

CO2Me t-BuO2C

Ph2C=N

CO2Me
2

KOH, CH2Cl2, -78 oC
ROH (10 mol%)

PTC 1 (10 mol%)

7a

ROH Time (h) Yielda (%) eeb (%)

None 24 <10c —
Phenol 10 40c 81
4-Methylphenol 10 93 92
2,6,-Dimethylphenol 10 93 98
Mesitol 8 95 98
2,4,6-Tri-tert-butylphenol 10 82 91

a Determined by 1H NMR.
b Determined by HPLC.
c Conversion after 10 h by 1H NMR.
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To probe this further we decided to investigate the application
of this approach in the Michael addition of imine 2 to methyl acry-
late. We were able to establish that this reaction was not promoted
by 10 mol % PTC 1 in conjunction with solid KOH9 at �78 �C. How-
ever, if 10 mol % phenol was included, the resulting mixture was
capable of promoting the desired Michael addition. After 10 h,
the reaction had proceeded to 40% conversion and the resulting ad-
duct 7a was produced in 81% ee. In an effort to improve on this, a
range of other phenol additives were examined (Table 2). This
study identified mesitol (2,4,6-trimethylphenol) as a highly effec-
tive co-catalyst10,11 for the Michael addition, generating the prod-
uct 7a in 95% yield and 98% ee.

Further investigation into the reaction conditions established
that for reproducible results, the three catalyst components
(KOH, mesitol and PTC 1) need to be pre-mixed at 0 �C for
30 min. In addition, all three are required to be present during
the Michael addition. If the solid KOH is removed prior to addition
of imine 2 and methyl acrylate, then low conversions are observed.
This suggests that the reaction mechanism is not as simple as ini-
tially envisaged.

As we have previously found that the nature of the solvent can
have profound effects on quaternary ammonium salt-catalyzed
Michael additions,4e,12 we next investigated the effect of changing
the reaction solvent (Table 3).
Table 3
Effect of solvent on the enantioselective Michael addition of imine 2 to methyl
acrylate

CO2Me
2

KOH, solvent, -78 oC
mesitol (10 mol%)
PTC 1 (10 mol%)

7a

Solvent Time (h) Yielda (%) eeb (%)

CH2Cl2 8 95 98
PhMe 10 <10c —
i-Pr2O 10 <10c —
THF 7 89 0
t-BuOMe 3 68 0
TAMEd 10 32c 0
1,3-Dioxolane 3 85 34
CH2Cl2/PhMe (1:1) 10 90c 98
t-BuOMe/PhMe (1:1) 10 50c �30

a Determined by 1H NMR.
b Determined by HPLC.
c Conversion after 10 h by 1H NMR.
d TAME = tert-amylmethylether.
Of the solvents investigated, only CH2Cl2, THF and 1,3-dioxolane
gave complete reaction within 10 h at �78 �C, and of these, only
CH2Cl2 resulted in high enantioselectivity. The majority of the
other solvents gave either no reaction or a racemic product. In
the case of t-BuOMe, the reaction was found to proceed signifi-
cantly faster than in other solvents. This was found to be due to
a fast background reaction mediated by the potassium salt of mes-
itol. It was also found that use of CH2Cl2/PhMe (1:1) resulted in
similar levels of enantioselectivity to CH2Cl2 alone, but the rate
of reaction was slowed. Interestingly, when t-BuOMe/PhMe (1:1)
was used the opposite enantiomer of 7a was produced in 30% ee.

These results clearly indicate that CH2Cl2 is the best solvent for
this process, so we next moved on to probe the scope of this pro-
cess by investigating the reaction of imine 2 with other Michael
acceptors (Table 4).

It was found that the optimized reaction conditions would suc-
cessfully promote addition of imine 2 to a range of enones (Table 4,
entries b–e) as well as acrylonitrile (entry f) and phenyl vinyl sul-
fone (entry g). Addition to the less electrophilic vinylphosphonates
and amides was not successful, even at higher temperatures. In all
cases, the levels of enantioselectivity were high.

Under the standard conditions, reaction with phenyl vinyl ke-
tone (entry e) gave significant amounts of the double addition
product 8. This could be minimized by slow addition of the enone
to the reaction mixture. Similar improvements to the yield of the
acrylonitrile adduct 7f could also be achieved via slow addition
of the electrophile.
Ph2C=N CO2t-Bu

Ph

O

O

Ph

8

The absolute stereochemistry of product 7a was established as (S)

by conversion to tert-butyl pyroglutamate and comparison of the
sign of rotation with that previously published.16 We were able to
demonstrate that 7d was also obtained as the (S)-isomer by conver-
sion of this product into (2S,5S)-5-butyl-2-(tert-butoxycar-
bonyl)pyrrolidine and by comparison of the sign of rotation with
that previously reported for this material.17 Product 7f was also
shown to be the (S)-isomer by comparison of the sign of rotation
Table 4
Enantioselective addition of glycine imine 2 to various Michael acceptors13,14

EWG t-BuO2C

Ph2C=N

2
KOH, CH2Cl2, -78 oC

mesitol (10 mol%)
PTC 1 (10 mol%)

7

EWG

Entry EWG Time (h) Yield (%)a eeb (%)

a CO2Me 8 95 98 (�) (S)
b COMe 2.5 80 95 (�) (S)
c COEt 6 87 95 (�)
d COn-Bu 5 65 91 (�) (S)
e COPh 1.5 63 9115 (�)

2.5c 99 8915 (�)
f CN 5 58 95 (�) (S)

8c 77 96 (�) (S)
g SO2Ph 1.5 90 92 (�)
h P(O)(OEt)2 10 <10 —
i CONMe2 10 <10 —

a Determined by 1H NMR.
b Determined by HPLC.
c Slow addition of Michael acceptor.
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with previously reported data4g and 7b by comparison of HPLC
retention times with previously published data.6c As yet, we have
not been able to unambiguously establish the absolute stereochem-
istry of Michael adducts 7c, 7e and 7g and so the signs of rotation
are given in Table 4. It should be noted that PTC 1 also gives (S)-
selectivity in the corresponding alkylation reactions (Table 1) and
so the Michael additions may be proceeding via similar ion-pair
intermediates to those proposed previously for the corresponding
alkylation reactions.1

In conclusion, we have shown that use of a co-catalyst can
greatly enhance the effectiveness of KOH-mediated asymmetric
PTC Michael additions involving glycine imine 2. The enantioselec-
tivities obtained using this method generally exceed those previ-
ously reported for the same substrates using alternative cinchona
alkaloid PTC procedures.4g,h,5 We are currently investigating the
application of this chemistry in target synthesis.
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